56 research outputs found

    On Computability of Equilibria in Markets with Production

    Full text link
    Although production is an integral part of the Arrow-Debreu market model, most of the work in theoretical computer science has so far concentrated on markets without production, i.e., the exchange economy. This paper takes a significant step towards understanding computational aspects of markets with production. We first define the notion of separable, piecewise-linear concave (SPLC) production by analogy with SPLC utility functions. We then obtain a linear complementarity problem (LCP) formulation that captures exactly the set of equilibria for Arrow-Debreu markets with SPLC utilities and SPLC production, and we give a complementary pivot algorithm for finding an equilibrium. This settles a question asked by Eaves in 1975 of extending his complementary pivot algorithm to markets with production. Since this is a path-following algorithm, we obtain a proof of membership of this problem in PPAD, using Todd, 1976. We also obtain an elementary proof of existence of equilibrium (i.e., without using a fixed point theorem), rationality, and oddness of the number of equilibria. We further give a proof of PPAD-hardness for this problem and also for its restriction to markets with linear utilities and SPLC production. Experiments show that our algorithm runs fast on randomly chosen examples, and unlike previous approaches, it does not suffer from issues of numerical instability. Additionally, it is strongly polynomial when the number of goods or the number of agents and firms is constant. This extends the result of Devanur and Kannan (2008) to markets with production. Finally, we show that an LCP-based approach cannot be extended to PLC (non-separable) production, by constructing an example which has only irrational equilibria.Comment: An extended abstract will appear in SODA 201

    Ascending-Price Algorithms for Unknown Markets

    Full text link
    We design a simple ascending-price algorithm to compute a (1+ε)(1+\varepsilon)-approximate equilibrium in Arrow-Debreu exchange markets with weak gross substitute (WGS) property, which runs in time polynomial in market parameters and log1/ε\log 1/\varepsilon. This is the first polynomial-time algorithm for most of the known tractable classes of Arrow-Debreu markets, which is easy to implement and avoids heavy machinery such as the ellipsoid method. In addition, our algorithm can be applied in unknown market setting without exact knowledge about the number of agents, their individual utilities and endowments. Instead, our algorithm only relies on queries to a global demand oracle by posting prices and receiving aggregate demand for goods as feedback. When demands are real-valued functions of prices, the oracles can only return values of bounded precision based on real utility functions. Due to this more realistic assumption, precision and representation of prices and demands become a major technical challenge, and we develop new tools and insights that may be of independent interest. Furthermore, our approach also gives the first polynomial-time algorithm to compute an exact equilibrium for markets with spending constraint utilities, a piecewise linear concave generalization of linear utilities. This resolves an open problem posed by Duan and Mehlhorn (2015).Comment: 33 page

    An Improved Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market

    Get PDF
    We present an improved combinatorial algorithm for the computation of equilibrium prices in the linear Arrow-Debreu model. For a market with nn agents and integral utilities bounded by UU, the algorithm runs in O(n7log3(nU))O(n^7 \log^3 (nU)) time. This improves upon the previously best algorithm of Ye by a factor of \tOmega(n). The algorithm refines the algorithm described by Duan and Mehlhorn and improves it by a factor of \tOmega(n^3). The improvement comes from a better understanding of the iterative price adjustment process, the improved balanced flow computation for nondegenerate instances, and a novel perturbation technique for achieving nondegeneracy.Comment: to appear in SODA 201

    Auction Algorithms for Market Equilibrium with Weak Gross Substitute Demands and Their Applications

    Get PDF

    Computing Equilibria in Markets with Budget-Additive Utilities

    Get PDF
    We present the first analysis of Fisher markets with buyers that have budget-additive utility functions. Budget-additive utilities are elementary concave functions with numerous applications in online adword markets and revenue optimization problems. They extend the standard case of linear utilities and have been studied in a variety of other market models. In contrast to the frequently studied CES utilities, they have a global satiation point which can imply multiple market equilibria with quite different characteristics. Our main result is an efficient combinatorial algorithm to compute a market equilibrium with a Pareto-optimal allocation of goods. It relies on a new descending-price approach and, as a special case, also implies a novel combinatorial algorithm for computing a market equilibrium in linear Fisher markets. We complement these positive results with a number of hardness results for related computational questions. We prove that it is NP-hard to compute a market equilibrium that maximizes social welfare, and it is PPAD-hard to find any market equilibrium with utility functions with separate satiation points for each buyer and each good.Comment: 21 page

    Breaking the 3/43/4 Barrier for Approximate Maximin Share

    Full text link
    We study the fundamental problem of fairly allocating a set of indivisible goods among nn agents with additive valuations using the desirable fairness notion of maximin share (MMS). MMS is the most popular share-based notion, in which an agent finds an allocation fair to her if she receives goods worth at least her MMS value. An allocation is called MMS if all agents receive at least their MMS value. However, since MMS allocations need not exist when n>2n>2, a series of works showed the existence of approximate MMS allocations with the current best factor of 34+O(1n)\frac{3}{4} + O(\frac{1}{n}). The recent work by Akrami et al. showed the limitations of existing approaches and proved that they cannot improve this factor to 3/4+Ω(1)3/4 + \Omega(1). In this paper, we bypass these barriers to show the existence of (34+33836)(\frac{3}{4} + \frac{3}{3836})-MMS allocations by developing new reduction rules and analysis techniques
    corecore